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ABSTRACT

The "Milne problem," expressed in probabilistic
terms, is solved for general transport and multiplicative
processes. If a particle initially in a given state at a given
position inside a surface T is multiply scattered while travel-
ing through a fixed medium, then, given the scattering cross
sections and, if required, the probability distribution for a
change of state between collisions (e.g., by diffusionor ioni-
zation), the problem is to obtain the probability that the par-
ticle eventually effects a first passage through a specified
position on the surface T and in a specified state. In the case
of a multiplicative process, given, in addition, the rates of
creation and annihilation of particles (considering the nature
of the particle as a state variable), the problem is to obtain
the probability that eventually n particles will emerge for
the first time through specified positions on 7 and in speci-
fied states (withn = 0,1,2, ...). A general solution is given
in the form of a convergent series whose terms are obtained
by iteration; this solution is unique if and only if the proba-
bility O, of an infinity of atomic events before a first pas-
sage (which is the limit of a certain nonincreasing sequence)
is identically zero; in the multiplicative case, 6 # 0 may
be taken to mean that the process is '"supercritical." The
mathematical theory that leads tothis solutionis agenerali-
zation of the corresponding theory for time -dependent Markov
processes in which the time variable is replaced by a set of
surfaces ordered by inclusion of their "insides," and is valid
for Euclidean space of any number of dimensions. Applying
it to the four-dimensional space of special relativity with
ordered sets of space-like surfaces, one obtains a Lorentz-
invariant formulation of the theory of physical Markov pro-
cesses. A few examples are given.
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A GENERAL THEORY OF
FIRST-PASSAGE DISTRIBUTIONS IN
TRANSPORT AND MULTIPLICATIVE PROCESSES

by

J. E. Moyal

I. INTRODUCTION

Many physical processes have the Markovian character in which a
particle suffers a succession of independent random scatterings while trav-
eling through some medium. Examples are: the diffuse scattering of light,
where the particle is a photon, the diffusion of neutrons, and the multiple
scattering of charged particles. In connection with such processes, one is
often interested in the probability distribution of the state variables of the
particle (velocity, energy, spin, etc.) and of the position at which it emerges
on its first passage through some surface independently of time. The posi-
tion probability will yield, by integration, the average flux density in the
case of a source or beam of particles. The theory of such first-passage
distributions goes by the name of theory of radiative transfer in the case of
the scattering of light (c.f. Chandrasekhar(3) and Sobolev;<9) see also
Wing,(lo) where such problems are discussed in a more general context).
The problem of obtaining the first-passage distributions, given the micro-
scopic scattering laws, is essentially the well-known Milne problem, which
has been solved exactly under rather restrictive simplifying assumptions
by means of the Wiener-Hopf integral-equation technique [c.f. Busbridge(z)].
The purpose of this report is to present a general theory for the solution of
such first-passage problems. We shall show that a solution always exists
and present it in the form of a convergent series whose terms are obtained
by iteration, and we shall give necessary and sufficient conditions for this
solution to be unique. Furthermore, we shall see that the theory developed
for this purpose can also be made to yield a Lorentz-invariant formulation
of the basic equations of physical Markov processes. Finally, we shall show
that the theory generalizes to first-passage problems in the case of pro-
cesses involving the creation and annihilation of particles, such as the mul-
tiplication of neutrons in fissionable material and electron-photon or nucleon

cascades.

II. FIRST-PASSAGE PROCESSES

The theory we are going to develop is based on a generalization of
the concept of a Markov process: such a process is usually defined on a
linearly ordered set (the time axis), and the required generalization
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consists in extending this definition to a partially ordered set. Let & be
such a set, and let 7T = 7, denote the ordering relation. For the purposes
of the present theory, & will consist of a set of two-sided, oriented, con-
tinuous and simply-connected surfaces in some finite-dimensional Euclid-
ean space X . Each such surface 7 partitions X into two disjoint sets:
the "inside" XT of 7 (which conventionally will include 7), and the
"outside" X-rr of T. We partially order & by inclusion of the "insides" of
its elements; i.e., we set T = T, whenever X JX 7. In the applications
to scattering processes, X = Rj; in the Lorentz-invariant formulation of
Markov process theory, X = R,. The whole theory can be extended to
more general topological spaces than Rp, but we shall not consider this
generalization here. To each 7 € & is assigned a space Q7 of elementary
events w; and a o-field & of measurable subsets I't of ;. If A£ is the
set of all possible states o of the particle (velocity, energy, spin, etc.),
and if x; denotes the position at which it emerges on its first passage
through the surface 7, then Wt = (a, %) and 7 = £ x ", which is a subset
of the space 0 =# x X. We assume given 0-fields B¢ of sets A in ¢
and &y of sets S in X , such that Vg &y (i.e., each surface T is mea-
surable), It follows that the class of all measurable subsets Sy of 7 is
itself a g-field &, and we set & = &4 x 31, which is a subfield of the
o-field & = B ¢ x By . Suppose furthermore that, for each ordered pair
T = T, of elements of &, we have defined a function P on &+ x {l;, so that
for each fixed Wy, € Q—ro, P(- | u)TO) is a measure on &1 satisfying the nor-
malization condition.

'c(T|co7—0) = P(Qr|wx) =1, (221}

and for each fixed set I'; € &, P(I ’) is a measurable function on i
Then P has the character of an incomplete conditional-probability distri-
bution (incomplete in the sense that it is not normalized to unity). For our
present purposes, P is interpreted as follows: given that the particle is
initially at the point x+; € X 1 in the state Q,, P(A x St o xTO) is the prob-
ability that it effects a first passage through some point of the set S g Ty
in some state a € A. Hence, &(T|a,, xTo) is the total probability of a first
passage through T and 7) = 1 - < is the probability that the particle never
passes through 7; 7] will in general be the sum of a stopping probability o
(due to slowing down of the particle in the scattering medium) and an
escape probability € (due to the particle escaping to infinity if 7 is not
closed). For this reason, we shall call P a first-passage distribution and
7 a no-passage probability; it is precisely because we have to allow for
processes with nonzero 7) that we do not require P to be normalized to
unity.

We now say that the family of all first-passage distributions defines
a generalized Markov process over the partially-ordered set & if its ele-
ments P satisfy the Chapman-Kolmogorov relation
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P (T rlwr,)= f P(I“T|w-rl ) B(dor, log) (252)
QT

for every ordered triple T = T; = To. It follows from this definition that the
transition distribution P defines an ordinary incomplete Markov process
over every linearly-ordered chain in &. We may therefore regard such a
generalized process as a family of ordinary Markov processes over the
chains in & mutually related by (2.2). It is clear that this family does not
define a stochastic process over & in the usual sense, because the condi-
tional distributions P are not defined for pairs of elements of & which are
not related by ordering. For the purposes of this report, where P has the
interpretation outlined above, we shall call such a generalized Markov
process a first-passage process.

III. LORENTZ-INVARIANT FORMULATION OF
MARKOV PROCESS EQUATIONS

Suppose now that X is the Minkowski four-dimensional space-time
of special relativity Ry, and take &y to be the Borel field of subsets of Ry.
If we choose & to be the set of all space-like surfaces in R, satisfying the
assumptions made above, then it is clear that the definition above yields a
relativistically invariant formulation of the concept of a temporal-particle
Markov process, in the sense that the Chapman-Kolmogorov relation (222)
is then invariant under Lorentz transformations. The same will be true,
as we shall see later, of other basic equations, such as the integral equa-
tion (4.2) and the "backward" integro-differential equation (5.6). If we
choose a particular Galileian frame of reference L in Ry, and consider the
linear chain '7L in & consisting of all flat space-like surfaces T normal
to the time-axis in L, then clearly we can assimilate T to the time coordi-
nate and :?'L to the time axis in L; x; is then a point x, St is a Borel sub-
set S of three-dimensional space R; at the time 7T, and the first-passage
distribution P, restricted to & 1, defines an ordinary temporal Markov
process over 9‘L, with T as parameter, satisfying the usual Chapman-
Kolmogorov relation.

P(A x S;7|ag, xgTo) = P(A x ST oy, %571) P(daydxy; Ty oo, %03 To),
AxR;

(e ="71" =70 (B39
The no-passage probability 7) defined in Section II, if it is not identi-

cally zero, must clearly be interpreted in this context as the cumulative dis-
tribution of the lifetime of the particle; i.e., (T oy, x0To) is the probability
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that the particle initially in state @, and position x, at time Ty is annihilated
at some time t = 7. We remark that a Lorentz-invariant formulation of this
kind is not appropriate in the case of multiple-scattering processes of the
type studied in the sections that follow, because for such processes there
exists an obviously preferred class of reference systems, namely, those in
which the scattering medium is at rest.

IV. DISCONTINUOUS FIRST-PASSAGE PROCESSES

In this section, we extend to first-passage processes the theory of
discontinuous Markov processes developed in Moya1(5s8) (referred to hence-
forth as I and II, respectively). The type of process we have in mind is one
in which the particle suffers multiple collisions, each causing an instanta-
neous change in its state. We assume that between collisions the process is
governed by a known first-passage distribution P,. More precisely,

Po(A x St ]ao, x—,—o) is the probability that the particle, initially in a state Qo at
thespoint xqe & Xir (the "interior" of T), effects a first passage through S+ in
some state a. € A before it has suffered any collision. We assume that Py
satisfies the Chapman-Kolmogorov relation (2.2), so that it defines a first-
passage process dependent on no collisions. This formulation has the virtue
of including processes in which not only the position, but also the state, of
the particle can change between collisions. For example, P; may charac-
terize changes of velocity by diffusion, or loss of energy by ionization. If,
between collisions, the particle moves in a straight line with its velocity and
other state variables remaining constant, then we have a purely discontinuous
(or pure multiple scattering) process; this case is dealt with in greater detail
in Section V. The effect of the collisions is assumed to be specified by a
known first collision and consequent state distribution Q, which is a condi-
tional distribution on & x . Q(A x X;T[ao, x7,) is interpreted as the prob-
ability that the particle, initially in state o, at x7, € X 1, suffers its first
collision at some point x € X (where X is a measurable subset of X ) before
it has made a first passage through the surface 7, and that its state imme-
diately after this first collision is some a € A. It follows from this defini-
tion that

Q(AxX;T]ao,xTo) = Q(Ax(X mXT);T|OLO,xTO).

The first-passage distribution P, and the conditional distribution Q are as-
sumed to be related as follows: for every ordered triple T = T} = Ty,

Q(AxX;’r|OL0, xTO) = Q(AXX;Tllao, X’ro)
+/ Q(AxX;T|oc1,le) Po(da,dx 7, | o, %7¢)-
IAXT

(4.1)
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The intuitive meaning of this relation is that the first collision and conse-
quent state probability in its left-hand side, which depends on the particle
not making a first passage through T, is the sum of two first collisions and
consequent state probabilities. The first (which is the first term in its
right-hand side) is dependent on no first passage through 7; = 7; the second
(which is the second term in its right-hand side) is dependent on a first
passage through 7; without collision and no first passage through T.

The first-passage distribution P we are seeking must then satisfy
the following integral equation:

P(AXST|0L0, x-ro) = Py (AxST|OLo, X'ro)

+f PAxSr|a, x) Q(dodx|ao, X70), (4.2)
A xX

which we also write in the abbreviated notation P = Py + P * Q, where the
symbol * stands for the integration operation that occurs in the second

term in the right-hand side of (4.2). The intuitive meaning of this equation
is, that the first-passage distribution P in its left-hand side is the sum of
two first-passage distributions: the first Py with no collisions, and the
second (which is the second term in its right-hand side) with at least one
collision. The problem that now confronts us is that of the existence of a
solution of (4.2) which is a first-passage distribution satisfying the Chapman-
Kolmogorov relation (2.2), and of the conditions under which this solution is
unique.

We define as in I and II, two sequences {Qn}, {Pn} where Q; = Q,
Qnt; = Qn* Q and Py = Po* Qp, n = 1,2, ... . If the particle is initially
in the state o at x7 € X7, then Qn(AxX; 7|y, xr,—o) represents the probability
that the nth collision occurs in X with consequent state o € A before the
particle effects a first passage through 7. Therefore

6n(Tloe, x75) = Qn(AxX ;Tlag, x7,)

represents the probability that the particle suffers at least n collisions in
X before it effects a first passage through T. Pn(A x St|a, x/ro) represents
the probability that the particle effects a first passage through S+ while in
a state @ € A and after suffering exactly n collisions in X+. Therefore

Kn(’r|ao,x'_ro) = Pn(ve XTIOLO:XTD)
represents the probability of a first passage through 7 after exactly n colli-

sions in X LetTg = 1 - kg - 6, andletpn = Mo * Qn, n = 1,2, ... . Itis
then easy to see that nn(Tlao, X70) is the probability that the particle suffers
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exactly n collisions without ever making a first passage through 7. One
can then show almost exactly, as in the proof of (2.4) in II, that

n-1
8 = 1- ) (g+my) =1, (4.3)
i=o
and that the sequence {6n}is nondecreasing. Let

(e 2]
8 = lim 8y = 1 - ). (k3 47;) = 1. (4.4)

—> 00 .
2 =0

We see from (4.4) that Skp and 37y both converge. The series 2Pp is ob-
viously majorized by Zkp and is hence convergent. Let

Es- ) Fr (4.5)

We then prove almost precisely as in the proof of Theorem 6.1 of I that PR
is a first-passage distribution satisfying the Chapman-Kolmogorov rela-
tion (2.2) and the integral equation (4.2); we call PR the regular solution

of (4.2).

One can show, as in the proof of Theorem 8.3 of I, that the regular
solution PR is the minimal nonnegative solution of (4.2). Whether it is also
its unique solution hinges on the values of §,. It is unique if and only if 64
is identically zero; this is shown as in the proof of the corollary to The-
orem 6.2 of I. We call the process stable when 6 = 0. These results are
summarized in the following theorem:

Theorem 4.1, The series

2

M8

n
0

1l

n

converges to a first-passage distribution PR which satisfies
the Chapman-Kolmogorov relation (2.2) and is the minimal
nonnegative solution of the integral equation (4.2); moreover,
PR is the unique solution of (4.2) if and only if 6, = 0.

Let kg = 2§ kp and MR = 3% Mn; then clearly

kR (Tloo, x7,) = PR(AXT!OLO, xTo)’
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and it follows from (4.4) that the corresponding no-passage probability

N =1-kgr = NR * b

Thus, if the particle is initially in the state &g at xr,, then the no-passage
probability (T |, xTo) is the sum of two probabilities, nR(Tfoco, x7,) and
900(7'|a.0,x-r0). Clearly, MR represents the stopping or escape probability
after a finite number of collisions in Xt. Hence, 6, must be interpreted
as the stopping or escape probability after an infinite number of collisions.
Note that the process is stable if and only if 1 = nr. It is also clear that
nR = 0 if and only if the no-passage probability with no collisions Mo = 0.
Hence, the total no-passage probability 71 = 0 if and only if both o = 0 and
Ehy = 0

V. FIRST-PASSAGE DISTRIBUTIONS IN PURE MULTIPLE
SCATTERING PROCESSES

In this section, we apply the theory outlined in Section IV to the spe-
cial case of a pure multiple-scattering process in R;, where only the position
of the particle changes between collisions, the other state variables remain-
ing constant. Let u represent the unit vector in the direction of motion of
the particle. If the particle initially at x suffers no collisions while travel-
ing a length of path s, then its position vector becomes x + us. It is conve-
nient to distinguish u from the remaining state variables V; thus, a = (v, 4),
and A = G x M, where G is the set of all y, and M is the set of all direc-
tions u. We assume that the probability that a particle at x and in the state
(v, ) suffers a collision while traveling a small distance s is My, i x) 6s +
o(8s), and the probability of more than one collision is of order o(6s). Thus,
the collision rate per unit distance traveled )\ is seen to be the inverse of the
mean free path of the particle. We also assume known the transition prob-
ability ¢ for the particle state conditional on a collision; that is,
¢>(A|70, Kos xo) is the probability, given a collision at X, of a transition from
the state (Yo, o) to some state (v, u) € A. Let

R(io, X0) = min{slxo +Hos €T}, (621
where xo € X7, and we set R (Lo,Xo) = @, if Xo + Hos does not lie on the sur-

face T for any finite s. Then it is easy to see that

R (Ko »%0)
Po(A x S7|Yo, to» X0) = expy- f Ao + Hos ) ds
0

8(Aly o, o) 8(STIxo+KoRT(Hos %0)), (5.2)

10
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il

where

IR1E (o, o) € A 1 ifm e,
5(*"“\70:#0) = , 5(ST|X0) = ’

0 otherwise 0 otherwise

and we have written, for brevity, x, for xr , and Ao+ os) for AMyo, Mos X0+ HoS)-
Similarly, one shows that

R7(lo, o)
OA x X; T|vo, o, Xp) = f B(A Yo, Moy X0+ Hos) 8(X |xo+Hos)
0

Lemma 5.1. The distributions P, and Q, defined respectively by (5.2) and
(5.3), satisfy the consistency relation (4.1).

s
Mo+ 1oO) do} Mo + [Los) ds. (5.3)

Proof. Suppose that T =T; = T, and write % for xr, and x, for x7; then

f QAxX; T|V1, Ky, %) Po(dvy, dpy, dxy |‘Vo, Los Xo)
AXT)

|

RTl(#o: o)
= Q(Ax X; 7|V or Mo» X0+ poR 73 (Ko, xo)) exp<- f A(xo+ Wos) ds

0

Rl o, xotHoRr, (Lios X0)]
f B(A | o, o %0 +H0[RTI(H0, %) +5])
0
6(X X+ ,Uo[R’Tl(/J-O: XO) i S])

= RTI(HOI xO)
' exXp 'f A(xo +Ho0) doO —f Mxo+Mo0) dO
0

0
X(xo+po[R71(,uo, x0)+s]) ds. (5.4)
From the definition of R, it is immediate that

Rl %0 +HoR 7, (o X0)] = R(ko, x0) = Ry (Kos %o)-






12

Substituting this relation in the last line of (5.4) and changing the variables
of integration to £ = R, (Lo, X0) +5, ¢ = RTl(po, Xo) + 0, we transform the
integral there to:

R (Uo, %o)
f B(A by o, tos X0 + o €) 8(X |0+ 1o €)
R”rl(#o: Xo)

€ RTI(#O, Xo)
exp -f AMxo+ o) A€ - f M(xo+1ot) dEpA(xo+ o) dE
RTI(,UO, %) 0

= Q(AxX; T|yo, Lo X0) - QAXX; 71 1Yo, o» X0)-

This completes the proof of the lemma.

The integral equation (4.2), which the first-passage distribution P
must satisfy, becomes in the present case

P(AxSrYo Mo» X0) = PolA xSty o, Hos %o)

Rr(o, Xo0)
+ff P(A xS7 Y, s X0+ Hos) B(dydilvo, to, %o +1os)
A Yo

If P satisfies (5.5), then one shows by an elementary calculation, similar
to that leading to the so-called "hackward" equation (4.26) in I, that P must
satisfy the integro-differential equation

s
AM(xo + MoO) dc} Mxo+Hos) ds. (5.5)

0
Mo g{-OP(vo, Hos Xo) = Mxo) {P(vo,uo, o) f P(Y, s %o) ¢(dvdi|Yo, o, %0)}
A

(5.6)

where we have suppressed the variables Ax S  in the notation for P, and
where g - BP/BXO is the derivative of P in the direction [o; i.e.,

o - OP/dx%o = z;yf)i)ap/axgi),

,u((,I) and xgl) being the components of [y and xo, respectively, in some orthog-
onal reference frame for Rj.
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The iteration relations that define the sequences {Qn}, {Pn}, and
hence the regular solution PR, take a simple form in the present case.
Thus we have, for the Qp,

RT(Ho,Xo)
Qn+1(AXX;T|'Ym#o,Xo) = ff Qn(AXX;T|%H,Xo+#OS)
A Yo

- d(dydp [yo, Mo, %0+ Hos)

s
exp {~ f (0 + Lo O) dc} A(xg + Hos) ds. (5.7)

0

Using the fact that P, = Py * Qp, we find a similar iteration relation for
the Pnp:

R (o, %0)
Pn+1(AxSTh/o, Hos Xo) = ff Pp(Ax STl% W, X0+ [os)
0

- @(dydp|vo, Mo %o+ Hos)

exp {- / A(x0 +1o0) dG} A(xo + os) ds. (5.8)
0

VI. MULTIPLICATIVE AND CASCADE FIRST-PASSAGE PROCESSES

We now consider first-passage distributions in processes involving
the creation and annihilation of particles, as well as their scattering; we
shall use the term atomic event as a generic name for all of these. We re-
strict ourselves here to processes involving only one type of particle (e.g.,
neutron multiplication, nucleon cascades neglecting meson production). The
generalization to processes involving several types of particles (e.g.,
electron-photon cascades, nucleon cascades with meson production) is im-
mediate and may be effected simply by considering the type of particle as
an additional state variable. Suppose that the process starts with k particles
(the "ancestors") in specified states and positions inside the surface 7, andlet

@) = (ay), -eer (1))

(k)

Xto, = (RTo(a)s <ser Xrok))

13
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stand, respectively, for these states and positions. As a result of multipli-
cations and annihilations, after an infinite lapse of time, n particles will
emerge for the first time through the positions

(n)

xS (x'r(l), cees XT(n))

on T, and in the states

a(n) = gl e O‘(n)):

where n can be any integer 0,1,2, ..., and n = 0 means that no particle
effects a first passage through 7. Note that particles may have been cre-
ated which are either annihilated or stop, or else go to infinity before pass-
ing through 7. The first-passage distributions we shall be interested in
here are precisely those that yield the probability that n particles will
effect a first passage through specified subsets of 7 in specified sets of
states. Let 1 = A£xTbe the set of all ordered pairs w; = (@, x7). In the

present context, an elementary event w = wh in an ordered set
(n)
o’ = (Or(), ..or OT(n))

hence, the space of elementary events assigned to 7 is

0o
Qr = U Q(Tn):
1ai=(3)

(o)

where Q(Tn) is the n-fold Cartesian product of §i; with itself, and D e

k . . :
responds to 0 particles. For a fixed initial w(7—o), the first-passage distribu-
tion P( - [ d)g;)) is then a probability measure on a suitably-defined o-field of
subsets of §J+ normalized as in (2.1). We assume that P is symmetric;
i.e., it is invariant under permutations of the coordinates W7(1), -+-» @7(n)

of w(Tn) for both the initial and the final states, which is equivalent to the
assumption that the particles are indistinguishable. We are thus dealing
with a stochastic population process [see Moyal(é) for the general theory of
such processes]. We shall also assume here that the process is multipli-
cative [or a branching process; c.f. Harris(4) and Moya1(7)],Jr in the sense
that the k ancestors propagate independently of each other, so that the first-

passage distribution P(- ]wg—lo)) relative to a single ancestor will suffice to
characterize the process. This condition may be expressed more precisely
in terms of the probability generating functional (p.g.f. for short) G of P.

Let £ be a bounded measurable function on ) , and let 5 be the measurable

tThe term "cascade process" is used for a multiplicative process whose

total energy is nonincreasing.

14
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function on Q+ whose restriction to Qg-n) is C(n)(w(Tn)) = C(w"r(l)) i(wﬂr(n))-
Then G is the expectation of { relative to P; i.e.,

cle,rlafh - & cla¥) - [ dan) praarlo®)
=

W) f ) Sor) - o) PP, (6.1)
n=o QT
where P(n) is the restriction of P to Q(Tn) The process is multiplicative
if and only if
(), _ 7,
Glt, Tlor’] = TT Gle, Tlwryi))- (6.2)

i=1

We can now extend to these multiplicative first-passage processes
all of the considerations of Sections II, III, IV, and V. Using (6.2), the
Chapman-Kolmogorov relation (2.2) becomes, in terms of the p.g.f.,

G[C,T|a>7-o] z fQ(n)TrG[C,T]a) Tl(i)] p(n)(dw(TI:)|<DTO)
n=o

i=1

G{G[C:T | 4 ]lw’To}l T=1Z=T,. (6.3)

Similarly, the integral equation (4.2) becomes, in terms of p.g.f.'s,

© n
GlE, Tlwr,) = Gt Tlorgl + 2 TT 6le,rlo )] 9N @e™lwr), (6.4)
n=o Q(n) i=n o
where Gg is the p.g.f. of the first-passage distribution Py with no atomic
events, and Q is the first atomic event position and consequent state dis-
tribution. For fixed wr, Q- |<D’ro) is a probability distribution on a suitably-
defined o-field of subsets of the space

i D (wexx )™,
=0

[Q(°) corresponds to annihilation, Q(l) to scattering, and Q(n) with n = 2 to
creation.] The sequences {Qn}, {Ppn}, and the regular solution PR are defined


http://GlC.Tla.7J

MapBlS Ay £ (18l (g o &

5l staie \oyepvens

(iprentd sr“;\

ot o=a

1o sottareteey iy sy (“)q

it yice

E 4]
- £7s -
T = ((rair 30
i
of boaixe won REs SW

lo =aoils 1sbivnns. 94 10 &M
1 vorogomic-SEagad

i \ v
T -l
i b a
o4
i —t
i ey

{,. r'u'!-{ P
4

0 1.3.q &) gl'piaa
eXt w1 S -Doan e
besl o9 pol

s 1o a¥eadoys Yo HISRED B

-
e
w:ym;iJ £ 5

o=

A rad bt d sy i shhoqiaTson

@
savaipss 34T |.oakin




as in Section IV; we write Gy = Go* Qp for the p.g.f. of Pp (the first-passage
distribution with n atomic events); the p.g.f. of PR is then

GR = z Gn.
n=o

We generalize Section V in the same way. Let
00

T ~#(n),
n=o

then the transition probability ¢(- |w7—) conditional on an atomic event is a
probability measure on a suitably-defined o-field of subsets of £ with dD(O)
corresponding to annihilation, ¢ 1) to scattering, and @(n)’ n = 2, tocreation.
The integral equation (5.5) takes the form

= (o> %0) 1
G[(DTO] = Golwr,] + Z f( )ﬁT 7TG['Y(i)xH(i): %o+ Hos]
n=o0 Y2\ J, i=1

. ¢(n)(d«/(n)du(n)h’o, Mo, %o+ Hos)

s
exp {_ f (g + 1£00) dO}X(x0+,uos) ds, (6.5)
0

where, for the sake of brevity, we have suppressed the variables i S i
and Gy, and the variables Yo, Mo in A. The "backward" integro-differential
equation (5.6) becomes

Ko 5%0 G[Yo» Hos %0] = (320 {G[Vo: Hos %o) - Z_ L(n) ZG[V(i)’ #(i)s %ol
: ¢(n)(dv(n)dﬂ(n) [oios xo)} A (6.6)

We obtain similar generalizations of the iteration relations (5.7), (5.8), and
so on.

In the applications of the foregoing theory, the first-passage distribu-
tion with no atomic events Py will, as a rule, conserve the total number of
particles (i.e., for a single "ancestor,")

Po( - |or,) = Pgl)(‘ lwT).

16
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If, however, there is a nonvanishing probability no(T|wr,) of the particle
stopping or escaping to infinity inside T before the occurrence of the first
atomic event, and if we wish the solution G of the integral equation (6.4) to
yield the distribution of all particles that eventually effect a first passage
through 7, then we must assimilate 7 to an annihilation probability and in-
clude it either in the expression for Q, or in that for Py; that is, we must
either set Q(°) = qo + Mo, where qg is the "true" annihilation probability, or
we must set Po0 = 7o, and hence

Go[CxT|fDT°] = 770(T|(D7—0) & / tlw) P<()1>(d607|(b70)-
Qr

In physical applications such as neutron multiplication, where T represents
the boundary of the body where the multiplication occurs, the case in which
the probability of an infinity of atomic events 6, ¥ 0 will usually mean that
the process is "supercritical," since it will usually imply an infinite out-
going flux of particles in the steady state for a constant source inside the
body on a constant incoming flux (e.g., see Example 2 in Section VII).

VII. EXAMPLES

Probably the simplest nontrivial examples one can construct to
illustrate the foregoing theory are "one-dimensional" ones in which the
particles move on a line and the "surfaces" 7 are the end-points of in-
tervals. Thus we shall take the set of all surfaces & to be the set of all
pairs of real numbers {a, b} with a < b, where the "interior" of the sur-
face {a, b} is the closed interval [a, b], and possibly, in addition, the set of
all real numbers a with "interior" (-, a].

Example 1. The first and simplest example we consider is that of a par-
ticle moving with constant absolute velocity, so that the only state vari-
able is the direction of motion u, which can only take two values: u =1
for motion to the right, and u = -1 for motion to the left. We assume a
constant mean free path A~! and a reversal of the direction of motion at
each collision [see Brockwell and Moyal 1) for a more thorough treatment
of this example]. We may, without loss of generality, take the "surfaces"
to be the set of all pairs {-a, a}, where a > 0. Let P(ia\p, x) be the prob-
ability that the particle initially at x and moving in the direction [
makes a first passage through ta. Clearly, by symmetry,

P(-alp x) = Plal-p, -x), (7.1)
so that one need only determine P(a|u, x). The integral equation (5.5) and

the corresponding "backward" equation (5.6) become, in this case,
respectively,

17
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a-ux
Plalp x) = e~ Ma-ux) +f P(al-u, x +us) e 5)\ds, (7.2)
0
and
)
k5o Plalw x) = MP(aly, x) - P(al-p, %)) (7.3)

The solution of (7.1) is [c.f. Brockwell and Moya.l(l), p. 15]

Paly, x) = [%(1 +u) + Ma+x)][1+2xa]™t. (7.4)
It follows by (7.2) that

Paly, x) + P(-a|y, x) = P(alu,x) + Plal-u, -x) = 1;

hence, the process is stable and the solution (7.4) is unique. Equation (7.4)
may be obtained either by the iteration relation (5.8), which here takes the
form

a-ux
P,(a |—p, x+us) e~ M\ds,

Pn+1<a‘ I:U'r X) = f
0

or by solving (7.3) with the boundary conditions P(all,a) = 1 and
B(al-1, -2) = 0.

Example 2. We construct an example of a multiplicative first-passage
process by modifying the previous example as follows: instead of just a
reversal at each collision, we assume that there is a probability gjj that
the particle splits into i + j particles, with i moving in the same direction,
j in the reverse direction, and all with the same, constant, absolute veloc-
ity as the "parent" particle, such that

00
i
i=o0 j

(Note that qgo is the probability of annihilation of the "parent," q;o the prob-
ability of a continuation of, and go the probability of a reversal of, direction

15

Mg

1]

Sip=
0

without splitting.) Let Pl(:jx)l—k(ﬂr x) be the probability conditional on a single
initial "ancestor" at x and moving in the direction K that eventually n par-
ticles will cross the boundaries a first time, with k moving to the right
through a, and n - k moving to the left through -a. In this case, the func-
tion ¢ in the p.g.f. can take only two values: £, for a passage through a,

18

and -, for a passage through -a. The expression (6.1) for the p.g.f. becomes






=] n it (1’1)
DESEEEE ) O O Pl x).
n=o k=o

Let

g(CII Q-l) =

M8
™M

C% QJ—I qij;

-
I

0

-
I
o

then the integral equation (6.5) and the corresponding "backward" equa-
tion (6.6) become, respectively,

Gl | x] = e-Ma-px) f Y > GHelw x+ps] GIlul-p, x +ps] e **rds
i=o j=o
(a-ux) e
3 5 f g(Gle |u, x + ps), GLE]-u, x +ps]) e™*5Ads,
(7:5)
and
0
p==Gltlwx] = MGl x] - g(GlElp, x], GlE|-p, x])} (7.6)
ox
If q.; = 1, then equation (7.6)becomes (setting X = 1, as we can do

without loss in generality, since this merely amounts to taking the mean
free path as the unit of length)

b Gl =) = GLLlw, =11 - GLE I, x] GLE |-, =]} (7.7)

which can be solved explicitly (the solution is due to Mr. P. J. Brockwell).
With the boundary conditions aflie e el = C'u, the solution is

Gle |u =] = ¢, exp{-[1-a(E)l(a-px)};

where for 0 = £, =1, o(t) is the minimal nonnegative solution of the func-
tional equation

a(t) exp{2all-a(0)]} = § L.

The probability of an infinity of atomic events is then

B, x) = 1 - exp{-(1-v)(a-pux)}

19
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where v = a(l) is the smallest nonnegative solution of

v exp[2a(l -v)] = I1;

hence, y = 1, and the process is stable (i.e., 6, = 0) if and only if 2a = 1;
otherwise y < 1, and the process is unstable. We may therefore interpret
2a = 1 as the "criticality" condition for this process and say that it is

"subcritical" when 2a < 1, "critical" when 2a = 1, and "supercritical
when 2a > 1. The total mean number of particles which effect a first pas-
sage through either a or -a is (setting §; = {_; = z)
s 2(a - ux)
Gl =)= w Glz|u, x] =it exp{-(1-y)(a-pux)} (7.8)
Z=1 - cay

We see that this mean is infinite when the process is critical, or more pre-
cisely, that m — +wo if ux % a and 2a — ! from the left. If we sety = 1 in
(7.8), then

) = Lo 79)
which is the solution of the equation for the mean

bl %) = - %) -m(-t, %) (7.10)

with boundary conditions m(u,a) = 1, for all values of a. The reason for

the discrepancy between (7.8) and (7.9) is simply that equation (7.10) is ob-
tained by setting £; = {-; = z in (7.7), differentiating both sides with re-
spect to z, and then setting z = 1 and G[l|,u,x] = 1. Tt therefore ceasesito
be valid in the supercritical case where

Gl1|u,x] = «r(px) = 1 - 6,(u, %) * 1,

and this is reflected by the fact that m in (7.9) can take negative values
when 2a > 1.

Example 3. We will now exhibit an example of an unstable, one-dimensional,
purely scattering process. We assume (1) that the mean free path is v/oc,
where a is a constant and v is the absolute velocity of the particle; (2) that
at each collision there is a constant probability p that the direction of mo-
tion pu is reversed, and 1 - p that it continues the same; and (3) that the
absolute velocity u after a collision is uniformly distributed between 0 and
the velocity v before the collision, independently of whether the direction of
motion is reversed or continued. Let P(u, ia|v, U, x) du be the probability
that the particle, initially at x with velocity v and direction of motion [,
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makes a first-passage through +a with velocity between u and u + du;
clearly, P = 0 when u > v and P satisfies (7.1). The integral and "back-
ward" equations for this process are, respectively,

a-ux
o sl x) = exp- L]+ [ e[S 2a
0

v

v
/ ®P(u, a|w, -, x +us) + (1 -p) Py, a|w, u, x +us)} _de_,
u

and

e}
FS5 P(u, a|v, u, x) = % P(u, alv, g, x)

-f PP(u, alw, -u, x) + (1 - p) P(u,alw,p,,x)}dTW.

Let Ggop) be the probability of an infinity of collisions for a given p.
In the degenerate casep = 0, 90(00) can be obtained explicitly (see I, p. 259):

Hlpspedp & i [1+%(a-ux)] expl:-%(a—}tx):] + 0.

It can be shown that

6(p)(v, Ty oc) = 90(00)(v, 1x)

(o}

for x =0 and 0 < p = 1, which proves that this process is unstable for all p.

The collision rate per unit time of this process is the constant @, so
that the probability of n collisions in a finite time interval t is

pilt) = (at)” e-at/n!;

hence,

SoPalt) = 1,

which means that the probability of an infinite number of collisions is zero

in any finite time interval. However, each collision slows the particle down
and thereby decreases its mean free path, thus creating the possibility that
it will not reach either boundary in any finite time. The probability that the

21
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particle is thus stopped is precisely 6, and since

lim Zg‘pj(t) = 0 for all n,

t—>oo

we see that O, is also the probability that the particle will suffer an infinite
number of collisions.

Example 4. The Milne Problem. We shall now consider briefly the Milne
problem from the point of view of the present paper; the treatment is very
similar to that of Sobolev(9), Ch. 6. We are concerned with a particle mov-
ing with constant velocity and constant mean free path (which we can take
equal to unity) in R;, and suffering isotropic scattering at each collision.

We take & to see the set of all ordered pairs of planes normal to the x-axis,
and we can, without loss of generality, assume that they cut this axis at *a,
where a > 0. Let 6 be the angle between the direction of motion and the
x-axis; let u = Icos 9| and 0 = sgn(cos 6). We see by symmetry consider-
ations that the first-passage probability density for the planes *a depends
only on the initial values 0, y, and k, on the final values 0, and u,, and on

ry, = flya-yP+(za-2)

where P refers to a first passage through the planes *a according as
Oa = %1, and ya, z, are the coordinates of the point of passage. Let

! 1
15 (U ra|x) = % z f Eloy ra!G,u, x) du,
g=-=1 Jo

and let By be similarly related to Py. The integral equation (5.5) becomes

(a-ox)/u i
P(0a, ta, Tal 0 iy %) = Po(04, ias T4 lo, 1, %) +f B(0g: lgr Tolx+0s) e ds,
0

(7.11)

where

PO(Oa’“a’ ralo, s x) = (S(p,a-;.t) 5[ra - (a-Cx) 4 l'I-LZ ]e_(a- OX)/H_

It follows that B satisfies the integral equation

a
Bley, [ | =NBa(a. , 1, ralx) +f B(o,, Ma» I‘a| £) Ei(€ -x) dE, (7.12)

-a
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where

Bi(x)e= fl e'|x|/# fiﬁ
"

0

It then follows, from the iteration relation (5.8), that

a

B (0a by, 2, |) f B, (0y g, 7, |€) Ei(€ -x) a2,
-a

and that

0
E= 08 LBy,
n=o
is the solution of (7.12) (it is easy to see that the series converges). The
first passage distribution P is then obtained from B by (7.11).
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